248 research outputs found

    Simultaneous exoplanet detection and instrument aberration retrieval in multispectral coronagraphic imaging

    Full text link
    High-contrast imaging for the detection and characterization of exoplanets relies on the instrument's capability to block out the light of the host star. Some current post-processing methods for calibrating out the residual speckles use information redundancy offered by multispectral imaging but do not use any prior information on the origin of these speckles. We investigate whether additional information on the system and image formation process can be used to more finely exploit the multispectral information. We developed an inversion method in a Bayesian framework that is based on an analytical imaging model to estimate both the speckles and the object map. The model links the instrumental aberrations to the speckle pattern in the image focal plane, distinguishing between aberrations upstream and downstream of the coronagraph. We propose and validate several numerical techniques to handle the difficult minimization problems of phase retrieval and achieve a contrast of 10^6 at 0.2 arcsec from simulated images, in the presence of photon noise. This opens up the the possibility of tests on real data where the ultimate performance may override the current techniques if the instrument has good and stable coronagraphic imaging quality. This paves the way for new astrophysical exploitations or even new designs for future instruments

    Frame Combination Techniques for Ultra High-Contrast Imaging

    Full text link
    We summarize here an experimental frame combination pipeline we developed for ultra high-contrast imaging with systems like the upcoming VLT SPHERE instrument. The pipeline combines strategies from the Drizzle technique, the Spitzer IRACproc package, and homegrown codes, to combine image sets that may include a rotating field of view and arbitrary shifts between frames. The pipeline is meant to be robust at dealing with data that may contain non-ideal effects like sub-pixel pointing errors, missing data points, non-symmetrical noise sources, arbitrary geometric distortions, and rapidly changing point spread functions. We summarize in this document individual steps and strategies, as well as results from preliminary tests and simulations.Comment: 9 pages, 4 figures, SPIE conference pape

    Direct Detection of Exoplanets

    No full text
    Invited review at the "Protostars and Planets V" Conference, October 24−28, 2005, Hilton Waikoloa Village, Hawai'i. Proceedings of the PPV Conference, in press, B. Reipurth and D. Jewitt Eds.Direct detection of exoplanets from the ground is now within reach of existing astronomical instruments. Indeed, a few planet candidates have already been imaged and analyzed and the capability to detect (through imaging or interferometry) young, hot, Jupiter-mass planets exists. We present here an overview of what such detection methods can be expected to do in the near and far term. These methods will provide qualitatively new information about exoplanets, including spectroscopic data that will mature the study of exoplanets into a new field of comparative exoplanetary science. Spectroscopic study of exoplanet atmospheres promises to reveal aspects of atmospheric physics and chemistry as well as internal structure. Astrometric measurements will complete orbital element determinations partially known from the radial velocity surveys. We discuss the impact of these techniques, on three different time scales, corresponding to the currently available instruments, the new ``Planet Finder'' systems under development for 8 to 10-m telescopes, foreseen to be in operation in 5 to 10 years, and the more ambitious but more distant projects at the horizon of 2020

    Apodized Lyot Coronagraph for VLT-SPHERE: Laboratory tests and performances of a first prototype in the visible

    Full text link
    We present some of the High Dynamic Range Imaging activities developed around the coronagraphic test-bench of the Laboratoire A. H. Fizeau (Nice). They concern research and development of an Apodized Lyot Coronagraph (ALC) for the VLT-SPHERE instrument and experimental results from our testbed working in the visible domain. We determined by numerical simulations the specifications of the apodizing filter and searched the best technological process to manufacture it. We present the results of the experimental tests on the first apodizer prototype in the visible and the resulting ALC nulling performances. The tests concern particularly the apodizer characterization (average transmission radial profile, global reflectivity and transmittivity in the visible), ALC nulling performances compared with expectations, sensitivity of the ALC performances to misalignments of its components

    NICMOS Imaging of the HR 4796A Circumstellar Disk

    Get PDF
    We report the first near infrared (NIR) imaging of a circumstellar annular disk around the young (~8 Myr), Vega-like star, HR 4796A. NICMOS coronagraph observations at 1.1 and 1.6 microns reveal a ring-like symmetrical structure peaking in reflected intensity 1.05 arcsec +/- 0.02 arcsec (~ 70 AU) from the central A0V star. The ring geometry, with an inclination of 73.1 deg +/- 1.2 deg and a major axis PA of 26.8 deg +/- 0.6 deg, is in good agreement with recent 12.5 and 20.8 micron observations of a truncated disk (Koerner, et al. 1998). The ring is resolved with a characteristic width of less than 0.26 arcsec (17 AU) and appears abruptly truncated at both the inner and outer edges. The region of the disk-plane inward of ~60 AU appears to be relatively free of scattering material. The integrated flux density of the part of the disk that is visible (greater than 0.65 arcsec from the star) is found to be 7.5 +/- 0.5 mJy and 7.4 +/- 1.2 mJy at 1.1 and 1.6 microns, respectively. Correcting for the unseen area of the ring yields total flux densities of 12.8 +/- 1.0 mJy and 12.5 +/- 2.0 mJy, respectively (Vega magnitudes = 12.92 /+- 0.08 and 12.35 +/-0.18). The NIR luminosity ratio is evaluated from these results and ground-based photometry of the star. At these wavelengths Ldisk(lambda)/L*(lambda) = 1.4 +/- 0.2E-3 and 2.4 +/- 0.5E-3, giving reasonable agreement between the stellar flux scattered in the NIR and that which is absorbed in the visible and re-radiated in the thermal infrared. The somewhat red reflectance of the disk at these wavelengths implies mean particle sizes in excess of several microns, larger than typical interstellar grains. The confinement of material to a relatively narrow annular zone implies dynamical constraints on the disk particles by one or more as yet unseen bodies.Comment: 14 pages, 1 figure for associated gif file see: http://nicmosis.as.arizona.edu:8000/AAS99/FIGURE1_HR4796A_ApJL.gif . Accepted 13 January 1999, Astrophyical Journal Letter

    BIGRE: a low cross-talk integral field unit tailored for extrasolar planets imaging spectroscopy

    Full text link
    Integral field spectroscopy (IFS) represents a powerful technique for the detection and characterization of extrasolar planets through high contrast imaging, since it allows to obtain simultaneously a large number of monochromatic images. These can be used to calibrate and then to reduce the impact of speckles, once their chromatic dependence is taken into account. The main concern in designing integral field spectrographs for high contrast imaging is the impact of the diffraction effects and the non-common path aberrations together with an efficient use of the detector pixels. We focus our attention on integral field spectrographs based on lenslet-arrays, discussing the main features of these designs: the conditions of appropriate spatial and spectral sampling of the resulting spectrograph's slit functions and their related cross-talk terms when the system works at the diffraction limit. We present a new scheme for the integral field unit (IFU) based on a dual-lenslet device (BIGRE), that solves some of the problems related to the classical TIGER design when used for such applications. We show that BIGRE provides much lower cross-talk signals than TIGER, allowing a more efficient use of the detector pixels and a considerable saving of the overall cost of a lenslet-based integral field spectrograph.Comment: 17 pages, 18 figures, accepted for publication in Ap

    Deep imaging of ÎČ Pictoris at L’: asymmetries in the disc and constraints on planets

    Get PDF
    We demonstrate here the potential of VLT/NaCo at L’ (3.8ÎŒm) in Angular Differential Imaging (ADI). We detect the ÎČ Pictoris disc above 5σ between 0.4’’ and 3.8’’, after combining data from 7 epochs or 3.1 years. To avoid the smearing of the planet due to its orbital motion within this time span (green arrow), we subtracted the planet from the 7 datasets. We used a star subtraction technique based on PCA (Soummer et al. 2012) and corrected for ADI biases by iterating. We implemented a forward modeling approach to constrain the dust distribution

    SPHERE IRDIS and IFS astrometric strategy and calibration

    Full text link
    We present the current results of the astrometric characterization of the VLT planet finder SPHERE over 2 years of on-sky operations. We first describe the criteria for the selection of the astrometric fields used for calibrating the science data: binaries, multiple systems, and stellar clusters. The analysis includes measurements of the pixel scale and the position angle with respect to the North for both near-infrared subsystems, the camera IRDIS and the integral field spectrometer IFS, as well as the distortion for the IRDIS camera. The IRDIS distortion is shown to be dominated by an anamorphism of 0.60+/-0.02% between the horizontal and vertical directions of the detector, i.e. 6 mas at 1". The anamorphism is produced by the cylindrical mirrors in the common path structure hence common to all three SPHERE science subsystems (IRDIS, IFS, and ZIMPOL), except for the relative orientation of their field of view. The current estimates of the pixel scale and North angle for IRDIS are 12.255+/-0.009 milliarcseconds/pixel for H2 coronagraphic images and -1.75+/-0.08 deg. Analyses of the IFS data indicate a pixel scale of 7.46+/-0.02 milliarcseconds/pixel and a North angle of -102.18+/-0.13 deg. We finally discuss plans for providing astrometric calibration to the SPHERE users outside the instrument consortium.Comment: 12 pages, 6 figures, 3 table

    Review of small-angle coronagraphic techniques in the wake of ground-based second-generation adaptive optics systems

    Get PDF
    Small-angle coronagraphy is technically and scientifically appealing because it enables the use of smaller telescopes, allows covering wider wavelength ranges, and potentially increases the yield and completeness of circumstellar environment - exoplanets and disks - detection and characterization campaigns. However, opening up this new parameter space is challenging. Here we will review the four posts of high contrast imaging and their intricate interactions at very small angles (within the first 4 resolution elements from the star). The four posts are: choice of coronagraph, optimized wavefront control, observing strategy, and post-processing methods. After detailing each of the four foundations, we will present the lessons learned from the 10+ years of operations of zeroth and first-generation adaptive optics systems. We will then tentatively show how informative the current integration of second-generation adaptive optics system is, and which lessons can already be drawn from this fresh experience. Then, we will review the current state of the art, by presenting world record contrasts obtained in the framework of technological demonstrations for space-based exoplanet imaging and characterization mission concepts. Finally, we will conclude by emphasizing the importance of the cross-breeding between techniques developed for both ground-based and space-based projects, which is relevant for future high contrast imaging instruments and facilities in space or on the ground.Comment: 21 pages, 7 figure

    HST/NICMOS Imaging of Disks and Envelopes Around Very Young Stars

    Get PDF
    We present HST/NICMOS observations with 0.1" (15 AU) resolution of six young stellar objects in the Taurus star-formation region. The targets of our survey are three Class I IRAS sources (IRAS 04016+2610, IRAS 04248+2612, and IRAS 04302+2247) and three low-luminosity stars (DG Tau B, Haro 6-5B, and CoKu Tau/1) associated with Herbig Haro jets. The broad-band images show that the near-infrared radiation from these sources is dominated by light scattered from dusty circumstellar material distributed in a region 10 - 15 times the size of our solar system. Although the detailed morphologies of the individual objects are unique, the observed young stellar objects share common features. All of the circumstellar reflection nebulae are crossed by dark lanes from 500 - 900 AU in extent and from less than 50 to 350 AU in apparent thickness. The absorption lanes extend perpendicular to known optical and millimeter outflows in these sources. We interpret the dark lanes as optically thick circumstellar disks seen in silhouette against bright reflection nebulosity. The bipolar reflection nebulae extending perpendicular to the dust lanes appear to be produced by scattering from the upper and lower surfaces of the disks and from dusty material within or on the walls of the outflow cavities. Out of five objects in which the central source is directly detected, two are found to be subarcsecond binaries. This mini-survey is the highest resolution near-infrared study to date of circumstellar environments around solar-type stars with age <= 1 Myr.Comment: 34 pages, 4 figures; also available at http://spider.ipac.caltech.edu/staff/brandner/topics/disks/disks.html ; accepted for publication in AJ (March 1999 issue
    • 

    corecore